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Abstract —A moment method for cafculatirrg the internal field distribu-

tions of arbitrarily shaped, irrhomogeneous dielectric bodies is presented, A

free-space Green’s function integral equation is used with 3-D linear basis

functions to describe the field variation within cells. Polyhedral volume

elements are used to model the scatterer’s curvature realistically without

an excessive number of unknowns. A new testing procednre, called the

mo&fied Galerkin’s method, is developed and used to obtain the matrix

equations with less CPU time but greater accuracy.

Cafcnlated internal field distributions of dielectric spheres, spheroids,

and a composite model of a rat are compared with other calculations and

experimental data. The agreement is generally good.

I. INTRODUCTION

T HE CALCULATION of induced electromagnetic

(EM) fields in irregularly shaped, inhomogeneous di-

electric models of humans and biological systems is still a

difficult problem in theoretical dosimet~ [1]. Such calcula-

tions are important because knowledge of the internal field

distributions can help identify potential local maxima of

absorbed energy and avoid possible health hazards due to

EM radiation that might occur even though the average

absorption rate is below the hazardous level. A knowledge

of absorbed energy patterns is also important in many

applications such as hyperthermia, medical diagnostics,

and antenna coupling.

The general procedure for calculating absorbed energy is

to solve Maxwell’s equations for the particular model

representing the absorber. Exact determination of the in-

duced internal field distributions of biological bodies is

difficult because the solutions are strongly dependent upon

such factors as shape, dimensions, internal structures of

the bodies, and frequency of the incident wave. The finite-

element method [2], [3] is best suited for bounded regions

such as waveguides, but is difficult to use in problems
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involving radiation in unbounded space. Techniques using

fast Fourier transforms (FFTs) have been successfully

applied only to cylindrical scatterers [4]. The formulations

of the surface-integral-equation technique (SIE) [5] and the

extended-boundary-condition method (EBCM) [6] are gen-

eral for arbitrarily shaped, inhomogeneous scatterers, and

the EBCM has long been used to compute the average EM

energy absorption rate of human bodies up to resonance

frequencies [7]. Because of numerical complexity, however,

only homogeneous objects with axisymmetric shapes have

been tackled by these two methods.

A solution based on the method of moments [8] with

cubical cells and pulse basis functions is applicable to

arbitrarily shaped bodies with inhomogeneities [9]. A 180-

cell inhomogeneous realistic model of man has been used

with this method to calculate whole-body average specific

absorption rates (SARS) for EM biohaxu-d studies [10],

and recent calculations for a 1132-cubical-cell model have

also been reported [11]. Massoudi et al. [12], however, have

shown that so-me serious deficiencies in this method make

the accuracy of the calculated internal field distributions

questionable. Basically, the numerical solutions obtained

by this approach tend to diverge with respect to the

subdivision of the cubical cells. A second moment-

method-based technique suitable for field calculations in-

side arbitrarily shaped, inhomogeneous dielectric bodies

has been developed recently by Schaubert et al. [13]. They

have used tetrahedral volume elements combined with

special vector basis functions (roof-top functions) in the

moment-method solutions. The tetrahedral cells give better

modeling flexibility y; however, from the data presented in

[13], it seems that this technique does not give greatly

improved results over the puke-basis-function method.

The technique described here is based on the method of

moments and the use of a free-space Green’s func-

tion integral equation (FGIE) similar to that given by

Barrington [8] and others and suggested by Massoudi et
al. [12] as being better for this application than the dyadic

Green’s function integral equation. The FGIE appears to

offer some advantages in internal field distribution calcu-

lations because it includes an explicit expression of the
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electric surface charge density and is less singular than the

dyadic Green’s function integral equation commonly used

with pulse basis functions. Subsectional 3-D linear basis

functions are used to describe the field variation within

each cell. In conjunction with the linear basis functions,

polyhedral cells are used to model 3-D dielectric objects.

This allows us to represent the curvature of the bodies

more realistically with fewer cells.

We have developed a new testing procedure, called the

modified Galerkin’s method (MGM), to obtain the matrix

equations from the FGIE. The new technique modifies the

Galerkin’s method in such a way that the volume-averag-

ing integrations can be approximated analytically. This

greatly reduces the amount of computation time required

and makes calculations using linear basis functions practi-

cal for some models.

In the next section, the FGIE is described and the

MGM testing procedure introduced. Numerical results

based on these procedures are presented in Section III.

Section IV discusses some possible approaches for im-

proving the linear approximation method.

H. FORMULATIONS

A. The Electric-Field Integral Equation

Consider a lossy, inhomogeneous dielectric body ex-

posed to the fields of an incident EM wave, as shown in

Fig. 1. The total electric field E(r) at any point within the

dielectric body can be expressed as

E(r) =Ez(r)+ #(t,(r’)-l)E(r’)

e ‘JR

~ dv’

- :J,{v:[(~r(r’)-’) E(r’)l}u

(1)

where r is the position vector of the field point, r’ is the

position vector of the source point, both normalized to K,

R=lr–r’l

~= (r-r’)
Ir–r’l

c, is the complex permittivity of the body, and E’(r) is the

incident electric field. Note that (1) has been normalized

with respect to k, the free-space propagation constant, and

that an eJ”t time dependence is assumed; hence, c,( r’) can

be written as c,(r’) = ~’(r’) – jc’’(r’). The derivation of (1)

is similar to derivations in [8]. Equation (1) is the FGIE

suggested by Massoudi et al. [12] as a better integral

equation for this method, and is equivalent to the one used

by Schaubert et al. [13]. The second term on the right-hand

side of (1) corresponds to the induced polarization current

sources due to the incident wave, while the third term is

the electric field produced by the induced charges in the

dielectric body. For simplicity, we assume a constant c,(r’)

k

L-

H’

t

z

/ x

Fig. 1. The source point, the polyhedral cell with the mathematical

averaging sphere, and the new coordinate system (a, b, c) for analytical
evacuation of the Galerkin’s averaging integrafs.

in each cell and zero free charge density. At every point

inside the cell except at the cell boundaries, the v‘. [(c,(r’)

– l) E(r’)] becomes zero when using this assumption, and

the third term on the right-hand side of (1) reduces to a

surface integral. Therefore, the shape of cell boundaries is

important in evaluating (l).

B. Basis Functions

To solve for the unknown E(r) in (l), the irradiated

object is partitioned into subsections, called cells, and the

E field in each cell is expressed in terms of a set of basis

functions. As mentioned before, solutions obtained with

pulse basis functions have not been satisfactory. Hence, we

have used linear subsectional basis functions to approxi-

mate the fields in each cell. The E field in cell n is

approximated as

E(rH) = {[a. X(x–x.)+b.X(y– y.)

+c~X(z–z~)+d~X]:

+[a.Y(x–x. )+ bn,(y-yn)

+c.Y(z–zJ+d.Y]j

+[aHz(x –x. )+ bmZ(Y– Y. )

+c~z(z–zJ+dJ~}P. (2)

where a.X, b.X, C.X, dcX, . . . are unknown coefficients,
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:.
~, J, k are the unit vectors of the x, y, z rectangular coordi-

nate system, and x., y., and z. are the coordinates of the

centroid of cell n. The P. in (2) is defined as

(p= 1 ifrisincelln
n O otherwise.

(3)

There are 12 unknowns for each cell, as can be seen from

(2).

Tetrahedral cells can represent a curved surface more

smoothly than cubical cells, but at the price of a larger

number of cells. We have therefore found polyhedral cells

to be better than tetrahedral cells because polyhedral cells

can represent the surfaces better with a manageable num-

ber of unknowns. A good representation of the surfaces on

which the surface charge density is present seems to be a

critically important factor in the numerical calculations.

C. The lfod~ied Galerkin’s Method

A testing procedure that will generate a set of linear

independent equations is needed for solving for the un-

known coefficients in (2) using the method of moments.

The point-matching technique is relatively simple, but its

solution is usually unstable. It has been found that point-

matching solutions are usually sensitive to the particular

points used for matching; hence, they are not suitable for

our purposes [8, pp. 11–14]. Galerkin’s method, in which

the solution is forced to satisfy the integral equation in an

average sense over the whole cell; is considered to be more

stable. Galerkin’s method iovolves choosing the weighting

(testing) functions to be the same as basis functions in the

inner product of the method-of-moments solution as fol-

lows :

(w, g) = ~w.gdv = f f.gdu (4)
v %

where w and f are the weighting and basis functions,

respectively, and this integration is over the whole volume

of the dielectric. Because of (3), the integration limits of (4)

actually can be reduced to Um, the volume of the cell m

where the weighting function w is defined.

We had first tried using Galerkin’s method to calculate

the fields inside a dielectric sphere irradiated by a plane

wave in order to compare the calculated results with those

of the exact Mie solution. Since the matrix elements can-

not be evaluated in closed form, numerical integrations

based on subdividing the polyhedrons were used to ap-

proximate (2) and (4) [15]. We found that in order to

evaluate the matrix elements numerically with reasonable

accuracy, large amounts of CPU time were required for

models with relatively simple geometry. Therefore, it

is difficult and impractical to apply this method with

Galerkin’s testing procedure to complicated objects such

as biological bodies.

In order to overcome the drawback of Galerkin’s method,

i.e., excessive amounts of CPU time required for numerical

integration, we have developed a new testing procedure,

called the modified Galerkin’s method (MGM), to obtain

the N independent linear equations. The procedures of the

MGM are as follows.

1) In the MGM, the weighting functions are chosen to

be the same as the basis functions in Galerkin’s method.

2) Instead of (4), the inner product of the MGM is

defined as

(w, g) =f w.gdv = ~ f.gdv
usm %III

(5)

where v~~ is a mathematical sphere with radius q and

center at the centroid of cell m where the weighting

functions are defined. Note that v~ in (4) stands for the

whole volume of cell m while, in the MGM, the volume is

that of a sphere centered in the m th cell. As a result, the

field representation in the MGM is forced to satisfy the

integral equation over this mathematical sphere instead of

over the ‘whole cell.

3) Taking the inner product of weighting functions with

(1) and rearranging terms, we have

(J
e –JR

}

w(r)y dv du’
%!

+&j {v’. (tr(r’)–l)~(r’)}
u’

=J w(r).Jwr)du (6)
u.m

where w(r) is the weighting function. Note that the order

of integration in the second and third terms on the right-

hand side of (1) has been switched; namely, the Galerkin’s

averaging integrations are calculated first and the source

integrations second.

4) Because u,~ is the volume of a mathematical sphere

with radius q and center at the centroid of cell m, all the

Galerkin’s averaging integrations in (6) can be performed

analytically to get closed-form expressions for these terms.

For example, substituting one of the w(r)’s into (6), the

Galerkin’s averaging integral in the second term of (6), i.e.,

ju~mw(r)e-JR/Rdv, will take one of the following scalar

forms:

e –jR

V3(r’) =~ (z–z.)Ydu
%rn

–R

Tj(r’) = ~,m>dv (7)
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multiplied by a unit vector ~ J; or ~. With reference to

Fig. 1, we define a new coordinate system (a, b, c) with

origin at the center of the mathematical sphere and with

the c axis along the line joining the center of the sphere to, hh
a source point r’. After the coordinate transformation and

some trigonometric manipulation, the closed-form solu-

tions of (7) can be written-as

Vl(r’) = aVW(r’)

V2(r’) =/iiVW(r’)

V3(r’) =yVW(r’)

V4(r’) = %{sin(q)-qcos(q)}~

with

VW(r’) = ={sin(q)[-4q2 +12j,s0 -4j,sOq2 +12]
so

(8)

+cos(q)[ –12q–12jsoTJ]

where a = [.2, ~ = Jp.~, y = t?. 2, and SO is the distance

between the center of the mathematical sphere and the

source point r’. Equations (8) are the various closed-form

expressions for the Galerkin’s averaging integral of the

second term in (6). The averaging integrals in the other

terms in (6) can be obtained in a similar way. Hence, (6) is

reduced to

~–&J(C,(r’) –l)E(r’)” V(r’)du’
u’

~,(r’)– l) E(r’)}S(r’) du’= Ii (9)

w(r) .E(r)du
J.

~–JR

V(r’) =~ w(r)Tdu
v.“??!

~i=f w(~)~i(r)du
~sm

The integrals of the second and third terms in (9) are

evaluated numerically.

There are two main parameters in the MGM, namely,

the position and the size of the mathematical averaging

sphere in each cell. We can always put the center of this

sphere close to the centroid of each cell so that the larger

part of the cell is covered by the sphere. Based on the cases

considered, a rule of thumb in choosing the radius q of

this sphere is to make the volume of the cell equal to the

volume of the averaging sphere. In this way, most of the

cell will be enclosed in the sphere, and perhaps even part

of the neighboring cells will be included. This should not

(a) (b)

@
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/ ‘\

2 ;7
/!
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E“% ~

,.. 4 k

x

L

J

Ei

) . ‘

/
:1 = exp [j(uIt - k.)]

(c) (d)

Fig. 2. Polyhedral cell models of one-eighth of a sphere. (a) Cell

arrangement of eight-cell model. (b) Cell arrangement of 32-cell model.
(c) Cal arrangem&t of 64-cell model. (d) Ou& surface patches of the
polyhedron model.

cause a problem. If the assigned regional basis functions

are able to describe the field variation within one cell

reasonably well, requiring the basis functions tc satisfy the

integral equation over the volume of the averaging sphere

would be a good approximation to requiring them to

satisfy the integral equation over the volume of the entire

cell. Since this is a least-square best fit of the basis

functions in an average sense over a volume, the results

would not be expected to depend critically on the exact

definition of the volume. This is the basic idea behind the

MGM.

It is important to note that the MGM is not equivalent

to using spherical cells because, in the MGM, the integra-

tion over the sources is still carried out over the polyhedral

cells. Only the averaging integration in the testing proce-

dure is carried out over the spherical volume.

111. NUMERICAL RESULTS

In order to test the accuracy of the solutions obtained

by the free-space Green’s-function, linear-basis, modified

Galerkin’s method (FGLMG), we have computed the in-

ternal fields in both homogeneous and layered spheres

exposed to an incident plane wave. These data are com-

pared below with the exact Mie solution [16], which is the

only available analytical solution for 3-D objects. Calcula-

tions have also been made for spheroids and al composite

rat model. As described below, the results agree well with

those of other numerical techniques and they agree quali-

tatively with some experimental data.
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Fig. 3. Calculated E field along the z axis in a homogeneous dielectric

sphere with r. = 0.408/k, c, = 36, and [J? I = 1 V/m. Eight-cell, 32-cell,

and 64-cell models are used.

A. Spherical Objects

Three polyhedral models have been used to calculate the

fields inside both homogeneous and layered dielectric

spheres irradiated by an incident EM plane wave. Shown

in Fig. 2(a)–(c) are one-eighth of the cell arrangements of

eight-cell, 32-cell, and 64-cell polyhedral models, respec-

tively. In the 32-cell model, there are four polyhedral cells

in each octant of the dielectric sphere, with a total of four

cells forming the core and 28 cells representing the shell.

The 32-cell model and the 64-cell model are constructed in

such a way that they can be used to model either a

homogeneous sphere or a layered sphere.

The outer surface of the sphere is approximated by

many small triangular patches on the polyhedral model, as

shown in Fig. 2(d). Because there is no restriction on the

number of patches a polyhedron can have, we have used

up to 81 patches on one octant of a spherical surface,

which constitutes a very realistic spherical model. These

triangular patches are basic elements in the numerical

calculation of the surface-charge term in (9). The volume

integration terms in (9) are computed numerically using

the ordinary rectangular rule, which consists of subdivid-

ing the polyhedral cells into small cubes and assuming a

constant value in each cube. The cubes do not fit the

boundaries of the polyhedral cells smoothly, but we have

found that this is not very critical for the volume integral

terms. The shape of the cells is critically important in

evaluating the surface integral terms in (9), but not in

evaluating the volume integral terms.
The first test case is a lossless, homogeneous dielectric

sphere with a radius r. = 0.408/k and perrnittivity c,= 36

irradiated by an x-polarized EM plane wave propagating

in the + z direction. All three of the spherical models of

Fig. 2 have been used to compute the induced E field for

~1 ‘N /’/ c = 80-j180

J I “w”0,
-20 -15 -lo -5 0 15 20

(kz)5 (X1:O-2)

(a)

g
-1 II

w“ ~
y

{ ------Mie I

RI
-i]:’: , ,* -----:y-’2(3 -15 -lo -5 0 10 15 zb

(k.; (X1O-2)

(b)

Fig. 4. Calculated E field along the z axis in an eight-cell model of a

homogeneous, lossy dielectric sphere with Y.= 0.2/k, c,= 80 – j180,
and IE’ I = 1 V/m. (a) Magnitude of Ex along the z axis. (b) Phase of
Ex along the z axis.

comparison with the Mie solution. Fig. 3 shows the magni-

tude of the dominant field EX along the z axis. It can be

seen that increasing the number of mathematical cells in a

given spherical model has systematically improved the

accuracy of the numerical results; therefore, the calculated

fields using this method appear to converge to the exact

solution.

Fig. 4 shows the computed E fields along the z axis

using the eight-cell spherical model and the Mie solution

for a small but highly lossy homogeneous sphere. Both the

magnitude and the phase of the fields have been plotted

against kz. The worst error was less than 7 percent for the

magnitude and 50 degrees for the phase. For most points,

the error was less than 5 percent and 20 degrees for

magnitude and phase, respectively.

The x component of the electric field along the z axis in

a 32-cell model of a two-layered lossy dielectric sphere
with a core radius rl = 0.2/k with complex permittivity of

c. = 40 – j40 and an outer radius of rz = 0.4/k with c,=

20 – j20 is shown in Fig. 5. Data obtained from the Mie

solution are also shown. The calculated fields can be seen

to agree well with the analytical solution except at one end

point, which has a maximum error of about 15 percent.
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Fig. 5. Calculated E field atong the z axis in a 32-cell model of a

two-layered lossy dielectric sphere with rl = 0.2/k, rz = 0,4\k, C,l = 40

– j40, C,2 = 20 – j20, and lE’ 1= 1 V/m. (a) Magnitude of EX along
the z axis. (b) Magnitude of EX and E, along the x axis.

The fields inside a lossless dielectric layered sphere with

a larger radius ( rz = 0.814/k) have also been calculated

using the 64-cell model. Fig. 6(a) is a plot of \EX I along the

z axis; Fig. 6(b) and (c) show IEx I and IE, I along the x

axis. Also shown are the results obtained by the exact Mie

solution and by Schaubert et al. [13], who used tetrahedral

cells with special (roof-top) basis functions and Galerkin’s

testing procedure.

The FGLMG shows a better agreement with the ana-

lytic solution than the tetrahedral solution, as indicated in

Fig. 6(b). In the vicinity of the dielectric interface, the
value of IEX I has a discontinuity because Ex is normal to

the dielectric interface. The linear basis functions clearly

reflect the discontinuity. The discontinuity is also implicit

in the formulation using roof-top basis functions, but is

not identifiable in the results shown in [13]; this is because

the cell surf aces are not perpendicular to E,, even though

the spherical surface is. In the 64-polyhedral-cell model

used with the linear basis functions, the number of un-

knowns can be reduced to 192 by taking advantage of two

planes of symmetry. In the 512-cell tetrahedral model used

with the roof-top basis functions, the number of unknowns

can be reduced to 272 by using two planes of symmetry.

Thus, the linear basis functions, in addition to requiring

————Mie

.+%=Z’l’”]

-1
...... ~

k

I I

(a)

> 0.4

‘L

1A

!....il4o.4 ,

—--- Mie

02
‘------ ‘efi%m
— FGIMG

o 0.395 0.817
kx

(b)

Fig. 6. Calculated E field along the z axis in a 64-cell model of a

two-layered lossless dielectric sphere with rl = 0.395/k, rz = 0.817/k,
Crl = 16, (72 = 9, and II?\ = 1 V/m. (a) Magnitude of El along the z
axis. (b) Magnitude of E. along the x axis. (c) Magnitude of E: along
the x axis.

“L
o 0.395 0.817

kx

(c)

fewer unknowns, provide a smoother approximation than

the roof-top functions, since the latter are linear in only

one direction.

The electric-field boundary condition requires the paral-

lel component to be continuous at the interface of inho-

mogeneities. Because of the use of subsectional basis func-

tions, discontinuities usually appear at the cell boundaries

of the solutions. This can be observed clearly in Fig. 3 and

Fig. 6(a) and (c), where the exact solutions predicted a

continuous curve, but the linear basis approximation

showed some jumps at the cell boundaries. Since these

jumps point out the degree of discrepancy between the

linear approximation and the exact solution, they can be

used as an important guide. When applying the FGLMG

to an unknown problem, if the resultant jumps are small
compared with the total field, the calculated solution is

probably close to the exact solution. If, however, the jumps

appear to be large, the results obtained on the cell

boundaries are contradictory and the calculated fields are

probably incorrect. This would indicate that smaller cells

must be used to obtain more accurate results.

B. Nonspherical Objects

The FGLMG has also been used to compute the in-

duced E field inside nonspherical bodies exposed to the

fields of an EM plane wave. A homogeneous spheroidal

model consisting of 24 polyhedral cells with 72 unknowns

(using two planes of symmetry) has been used with the
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Fig. 7. Calculated E field along the major axis in a model of a lossy
dielectric spheroid, I.?zI = 1 V/m, by the finear-basis-function method
and the long-wavelength approximation. Three major cases (E, H, and
K polarization) are shown.

linear-basis-function method. The calculated data have

been compared with those obtained by the long-wave-

length analysis [17]. Data for three standard polarizations,

E, H, and K, are shown in Fig. 7 for a spheroid of

ka = 0.3, a/b= 3, and c,= 40– j40, where a and b are

the semimajor and semiminor axes, respectively. The

agreement of these two techniques appears to be very

good.

An ongoing research project at the University of Utah

has been the experimental determination of the SAR dis-

tribution in models of a rat exposed to EM fields in the

range of 360 MHz to 2450 MHz. One of the models is a

composite of two prolate spheroids, one simulating the

head and the other the body of a medium-size rat with a

total length of 17.5 cm and a mass of 256 g [18]. This

model was made of material with electric properties of

muscle and was irradiated by a 360-MHz plane-wave

source.

The experimental SAR data shown in Fig. 8 were taken

from nine temperature probes placed along the major axis

of the composite rat model. Some preliminary data on

SAR distributions inside this composite model using the

linear-basis-function method have been obtained and com-

pared with the experimental data. Since the actual permit-

tivity of the model material has not yet been measured, the

calculated SAR distributions for two different values of

complex permittivity, along with the experimental data,

are shown in Fig. 8. Reasonably good qualitative agree-

ment for the calculated and the measured data can be

observed in Fig. 8.

C. Computation Time

The calculations with linear basis functions described

above were made on the University of Utah’s Univac 1161

computer. The CPU time consumed depended upon the
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Fig. 8. SAR distribution inside a composite model of a medium-size rat
irradiated by an EM plane wave at 360 MHz; E polarization. The
model is 17.5 cm long and 5.2 cm wide.

number of cells, the cell configuration, and the degree of

accuracy required. For the results of Fig. 3 obtained with

eight-cell, 32-cell, and 64-cell spherical models, the CPU

times were 2.6 rein, 8 rein, and 47 tin, respectively. These

times include tracing the triangular patches, building the

matrix, and doing LU factorization. It has been found that

most of the computation time, about 90 percent, was spent

on filling the matrix, which includes two numerictd in-

tegrations as in (9).

We have found that particularly the second term (volume

integral) in (9) accounts for most of the matrix building

time because it is based on a crude algorithm. In all the

cases described above, the numerical integrations have

been overdone to ensure accuracy.

In other words, similar results should still be obtained

with less accuracy in evaluating the matrix elements and

hence less CPU time. For larger objects, such as the case

of Fig. 6, we have used more subdivisions in numerical

integration, so the total CPU time was as high as 81 min.

One thing worth mentioning is that the (c ,(r’) – 1) term in

(9) can be decoupled from ‘the matrix. Therefore, the

matrix for a specific cell geometry at a given frequency can

be first built and stored, and the results for different

dielectric constants but the same shape and size can be

obtained by repeatedly inverting the stored matrix coupled

back with factors (~,(r’) – 1). Considerable savings in

computation time can be achieved in this way because the
matrices need only be built once.

IV. DISCUSSION AND SUMMARY

A new method for computing the induced electromag-

netic fields inside arbitrarily shaped, three-dimensional,

inhomogeneous dielectric bodies has been presented. This

method is based on the use of arbitrarily shaped poly-

hedral volume elements, which allows realistic modeling of

body shapes.

Subsectional linear basis functions have been used to

represent the field within each cell. Although these basis

functions result in larger matrices for a given number of

cells than pulse basis functions, the cell size can generally
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be much larger with linear basis functions than with pulse

functions. The 3-D linear basis functions also provide a

smoother description of the fields.

A new testing procedure, called the modified Galerkin’s

method, has been developed and used with the method-of-

moments solution. The advantages of the MGM testing

procedures over the ordinary Galerkin’s method can be

summarized as follows.

1) It replaces the numerical integration for averaging

over the cells by analytical integrations over spheres ap-

proximating the cell volumes, ‘which greatly reduces com-

putation time and numerical errors.

2) It eliminates the troublesome l\R singularity in the

self-term of Galerkin’s method.

3) Because the numerical averaging integration is

omitted, multipatched polyhedrons can be used to form a

very realistic model.

A major limitation of the linear basis functions is the

large matrices required for a given number of cells as

compared to other methods. The condition v ‘O[(c,(r’) –

l) E(r’)] = O in the internal region of every cell, as dis-

cussed above, can be applied to reduce further the number

of unknowns per cell by one. However, 11 unknowns per

cell is still large compared with the three unknowns in each

cell for pulse basis functions. A possible way to reduce the

number of unknowns required for the linear basis func-

tions would be to require the basis functions in each cell to

satisfy the boundary conditions at the cell walls. This, of

course, would also complicate the algorithms. The tech-

nique, however, does appear promising; in the one test

case we tried, we found that the calculated results were

about the same when the number of unknowns was re-

duced by satisfying the boundary conditions as when the

boundary conditions were not used [15]. In order to reduce

the CPU time required to build the matrices, the primitive

rectangular rule used in evaluating the numerical integra-

tions should also be replaced by a more efficient al-

gorithm,

Test cases including homogeneous spheres, layered

spheres, and nonspherical objects indicate that better accu-

racy in calculating internal SAR distributions can be ob-

tained by using linear basis functions. In order to increase

the applicable range of this method, for instance, to larger

and more complex dielectric bodies such as human bodies,

more work needs to be done in reducing the unknowns in

each cell so that more cells can be used in modeling the
complex structures.
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