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A Procedure for Calculating Fields Inside
Arbitrarily Shaped, Inhomogeneous
Dielectric Bodies Using Linear Basis
Functions with the Moment Method

CHI-TAOU TSAI, HABIB MASSOUDI, MEMBER, IEEE, CARL H. DURNEY, SENIOR MEMBER, IEEE, AND
MAGDY F. ISKANDER, SENIOR MEMBER, IEEE

Abstract — A moment method for calculating the internal field distribu-
tions of arbitrarily shaped, inhomogeneous dielectric bodies is presented. A
free-space Green’s function integral equation is used with 3-D linear basis
functions to describe the field variation within cells. Polyhedral volume
elements are used to model the scatterer’s curvature realistically without
an excessive number of unknowns. A new testing procedure, called the
modified Galerkin’s method, is developed and used to obtain the matrix
equations with less CPU time but greater accuracy.

Calculated internal field distributions of dielectric spheres, spheroids,
and a composite model of a rat are compared with other calculations and
experimental data. The agreement is generally good.

I. INTRODUCTION

HE CALCULATION of induced electromagnetic
T(EM) fields in irregularly shaped, inhomogeneous di-
electric models of humans and biological systems is still a
difficult problem in theoretical dosimetry [1]. Such calcula-
tions are important because knowledge of the internal field
distributions can help identify potential local maxima of
absorbed energy and avoid possible health hazards due to
EM radiation that might occur even though the average
absorption rate is below the hazardous level. A knowledge
of absorbed energy patterns is also important in many
applications such as hyperthermia, medical diagnostics,
and antenna coupling.

The general procedure for calculating absorbed energy is
to solve Maxwell’s equations for the particular model
representing the absorber. Exact determination of the in-
duced internal field distributions of biological bodies is
difficult because the solutions are strongly dependent upon
such factors as shape, dimensions, internal structures of
the bodies, and frequency of the incident wave. The finite-
element method (2], [3] is best suited for bounded regions
such as waveguides, but is difficult to use in problems
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involving radiation in unbounded space. Techniques using
fast Fourier transforms (FFTs) have been successfully
applied only to cylindrical scatterers [4]. The formulations
of the surface-integral-equation technique (SIE) [5] and the
extended-boundary-condition method (EBCM) [6] are gen-
eral for arbitrarily shaped, inhomogeneous scatterers, and
the EBCM has long been used to compute the average EM
energy absorption rate of human bodies up to resonance
frequencies [7]. Because of numerical complexity, however,
only homogeneous objects with axisymmetric shapes have
been tackled by these two methods.

A solution based on the method of moments [8] with
cubical cells and pulse basis functions is applicable to
arbitrarily shaped bodies with inhomogeneities [9]. A 180-
cell inhomogeneous realistic model of man has been used
with this method to calculate whole-body average specific
absorption rates (SARs) for EM biohazard studies [10],
and recent calculations for a 1132-cubical-cell model have
also been reported [11]. Massoudi et al. [12], however, have
shown that some serious deficiencies in this method make
the accuracy of the calculated internal field distributions
questionable. Basically, the numerical solutions obtained
by this approach tend to diverge with respect to the
subdivision of the cubical cells. A second moment-
method-based technique suitable for field calculations in-
side arbitrarily shaped, inhomogeneous dielectric bodies
has been developed recently by Schaubert er al. [13]. They
have used tetrahedral volume elements combined with
special vector basis functions (roof-top functions) in the
moment-method solutions. The tetrahedral cells give better
modeling flexibility; however, from the data presented in
[13], it seems ‘that this technique does not give greatly
improved results over the pulse-basis-function method.

The technique described here is based on the method of
moments and the use of a free-space Green’s func-
tion integral equation (FGIE) similar to that given by
Harrington [8] and others and suggested by Massoudi et
al. [12] as being better for this application than the dyadic
Green’s function integral equation. The FGIE appears to
offer some advantages in internal field distribution calcu-
lations because it includes an explicit expression of the
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electric surface charge density and is less singular than the
dyadic Green’s function integral equation commonly used
with pulse basis functions. Subsectional 3-D linear basis
functions are used to describe the field variation within
each cell. In conjunction with the linear basis functions,
polyhedral cells are used to model 3-D dielectric objects.
This allows us to represent the curvature of the bodies
more realistically with fewer cells.

We have developed a new testing procedure, called the
modified Galerkin’s method (MGM), to obtain the matrix
equations from the FGIE. The new technique modifies the
Galerkin’s method in such a way that the volume-averag-
ing integrations can be approximated analytically. This
greatly reduces the amount of computation time required
and makes calculations using linear basis functions practi-
cal for some models.

In the next section, the FGIE is described and the
MGM testing procedure introduced. Numerical results
based on these procedures are presented in Section IIIL
Section IV discusses some possible approaches for im-
proving the linear approximation method.

II. FORMULATIONS

A. The Electric-Field Integral Equation

Consider a lossy, inhomogeneous dielectric body ex-
posed to the fields of an incident EM wave, as shown in
Fig. 1. The total electric field E(r) at any point within the
dielectric body can be expressed as

E(n) = E(1)+ 5 [ (6 (1) - E()
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where r is the position vector of the field point, r’ is the
position vector of the source point, both normalized to X,
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¢, is the complex permittivity of the body, and E'(r) is the
incident electric field. Note that (1) has been normalized
with respect to k, the free-space propagation constant, and
that an e/’ time dependence is assumed; hence, ¢,(#’) can
be written as €,.(r”) = €’(r’)— je’(#’). The derivation of (1)
is similar to derivations in [8]. Equation (1) is the FGIE
suggested by Massoudi et al. [12] as a better integral
equation for this method, and is equivalent to the one used
by Schaubert ef al. [13]. The second term on the right-hand
side of (1) corresponds to the induced polarization current
sources due to the incident wave, while the third term is
the electric field produced by the induced charges in the
dielectric body. For simplicity, we assume a constant €,(#’)
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Fig. 1. The source point, the polyhedral cell with the mathematical
averaging sphere, and the new coordinate system (a, b, ¢) for analytical
evaluation of the Galerkin’s averaging integrals.

in each cell and zero free charge density. At every point
inside the cell except at the cell boundaries, the v ’-{(€,(r")
—1)E(r")] becomes zero when using this assumption, and
the third term on the right-hand side of (1) reduces to a
surface integral. Therefore, the shape of cell boundaries is
important in evaluating (1).

B. Basis Functions

To solve for the unknown E(r) in (1), the irradiated
object is partitioned into subsections, called cells, and the
E field in each cell is expressed in terms of a set of basis
functions. As mentioned before, solutions obtained with
pulse basis functions have not been satisfactory. Hence, we
have used linear subsectional basis functions to approxi-
mate the fields in each cell. The E field in cell » is
approximated as

E(r,) = {[a,(x=x,)+ b (y =)
+enlz—2,)+d, )i
+[a,,(x=x,)+b,,(y= )
+e,,(z—2z,)+ dny]f

+ [anz(x_xn)+bnz(y_yn)
+an(Z—Zn)+an]l;}Pn

)

where a,,,b,,.C,,,d,, '+ are unknown coefficients,
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i f, k are the unit vectors of the x, ¥, z rectangular coordi-
nate system, and x,, y,, and z, are the coordinates of the
centroid of cell #. The P, in (2) is defined as

®3)

There are 12 unknowns for each cell, as can be seen from
2).

Tetrahedral cells can represent a curved surface more
smoothly than cubical cells, but at the price of a larger
number of cells. We have therefore found polyhedral cells
to be better than tetrahedral cells because polyhedral cells
can represent the surfaces better with a manageable num-
ber of unknowns. A good representation of the surfaces on
which the surface charge density is present seems to be a
critically important factor in the numerical calculations.

P ={1 if risin cell n
" 0 otherwise.

C. The Modified Galerkin’s Method

A testing procedure that will generate a set of linear
independent equations is needed for solving for the un-
known coefficients in (2) using the method of moments.
The point-matching technique is relatively simple, but its
solution is usually unstable. It has been found that point-
matching solutions are usually sensitive to the particular
points used for matching; hence, they are not suitable for
our purposes [8, pp. 11-14}. Galerkin’s method, in which
the solution is forced to satisfy the integral equation in an
average sense over the whole cell, is considered to be more
stable. Galerkin’s method involves choosing the weighting
(testing) functions to be the same as basis functions in the
inner product of the method-of-moments solution as fol-
lows:

(w.8) fvw gdv fvmf gdv (4)
where w and f are the weighting and basis functions,
respectively, and this integration is over the whole volume
of the dielectric. Because of (3), the integration limits of (4)
actually can be reduced to v,,, the volume of the cell m
where the weighting function w is defined.

We had first tried using Galerkin’s method to calculate
the fields inside a dielectric sphere irradiated by a plane
wave in order to compare the calculated results with those
of the exact Mie solution. Since the matrix elements can-
not be evaluated in closed form, numerical integrations
based on subdividing the polyhedrons were used to ap-
proximate (2) and (4) [15]. We found that in order to
evaluate the matrix elements numerically with reasonable
accuracy, large amounts of CPU time were required for
models with relatively simple geometry. Therefore, it
is difficult and impractical to apply this method with
Galerkin's testing procedure to complicated objects such
as biological bodies.

In order to overcome the drawback of Galerkin’s method,
i.e., excessive amounts of CPU time required for numerical
integration, we have developed a new testing procedure,
called the modified Galerkin’s method (MGM), to obtain
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the N independent linear equations. The procedures of the
MGM are as follows.
1) In the MGM, the weighting functions are chosen to
be the same as the basis functions in Galerkin’s method.
2) Instead of (4), the inner product of the MGM is
defined as

(5)

where v,, is a mathematical sphere with radius n and
center at the centroid of cell m where the weighting
functions are defined. Note that v,, in (4) stands for the
whole volume of cell m while, in the MGM, the volume is
that of a sphere centered in the mth cell. As a result, the
field representation in the MGM is forced to satisfy the
integral equation over this mathematical sphere instead of
over the whole cell.

3) Taking the inner product of weighting functions with
(1) and rearranging terms, we have

/ w(r)-E(r)dv-—-% fvl(e,(r’)—l)E(r’)

{/ w(r) e;R dv} &’
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5
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(6)

where w(r) is the weighting function. Note that the order
of integration in the second and third terms on the right-
hand side of (1) has been switched; namely, the Galerkin’s
averaging integrations are calculated first and the source
integrations second.

4) Because v,,, is the volume of a mathematical sphere
with radius n and center at the centroid of cell m, all the
Galerkin’s averaging integrations in (6) can be performed
analytically to get closed-form expressions for these terms.

For example, substituting one of the w(r)’s into (6), the
Galerkin’s averaging integral in the second term of (6), i.e.,
[, w(rye™®/Rdv, will take one of the following scalar
forms:

—JR
R

e /R
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multiplied by a unit vector ¢, j, or k. With reference to
Fig. 1, we define a new coordinate system (a, b, ¢) with
origin at the center of the mathematical sphere and with
the ¢ axis along the line joining the center of the sphere to,
a source point r’. After the coordinate transformation and
some trigonometric manipulation, the closed-form solu-
tions of (7) can be written as

vi(r') = o, (r)
V,(r) =BV, (r')
Vi(r') =vV,(r)

4 Jse
V,(r)= . {sin(n)—ncos(n)}é (8)
1)
with
7T€_js° _
v, (r) = " {sin(n)[—4n* +12 sy —4jsn® +12]
0

+cos (n)[ — 129 —12 jsgn]

where a=1i- é, B=f- é, y=l§-c‘, and s, is the distance
between the center of the mathematical sphere and the
source point #’. Equations (8) are the various closed-form
expressions for the Galerkin’s -averaging integral of the
second term in (6). The averaging integrals in the other
terms in (6) can be obtained in a similar way. Hence, (6) is
reduced to ‘

- Z%L'(e,(r’)—l)E(r’)-V(r’) a

b [ {9 r) DB} S =1 (9
with

1=fv w(r)-E(r) dv

S(r) =fvm(w(r)-ﬁ)e;R(j+ %) o
";R "

V(r')=‘/;

r={

s,

w(r)

w(r)-E'(r) dv.

The integrals of the second and third terms in (9) are
evaluated numerically.

There are two main parameters in the MGM, namely,
the position and the size of the mathematical averaging
sphere in each cell. We can always put the center of this
sphere close to the centroid of each cell so that the larger
part of the cell is covered by the sphere. Based on the cases
considered, a rule of thumb in choosing the radius % of
this sphere is to make the volume of the cell equal to the
volume of the averaging sphere. In this way, most of the
cell will be enclosed in the sphere, and perhaps even part
of the neighboring cells will be included. This should not
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Fig. 2. Polyhedral cell models of one-eighth of a sphere. (a) Cell
arrangement of eight-cell model. (b) Cell arrangement of 32-cell model.
(¢) Cell arrangement of 64-cell model. (d) Outer surface patches of the
polyhedron model.

cause a problem. If the assigned regional basis functions
are able to describe the field variation within one cell
reasonably well, requiring the basis functions to satisfy the
integral equation over the volume of the averaging sphere
would be a good approximation to requiring them to
satisfy the integral equation over the volume of the entire
cell. Since this is a least-square best fit of the basis
functions in an average sense over a volume, the results
would not be expected to depend critically on the exact
definition of the volume. This is the basic idea behind the
MGM.

It is important to note that the MGM is not equivalent
to using spherical cells because, in the MGM, the integra-
tion over the sources is still carried out over the polyhedral
cells. Only the averaging integration in the testing proce-
dure is carried out over the spherical volume.

II1.

In order to test the accuracy of the solutions obtained
by the free-space Green’s-function, linear-basis, modified
Galerkin’s method (FGLMG), we have computed the in-
ternal fields in both homogeneous and layered spheres
exposed to an incident plane wave. These data are com-
pared below with the exact Mie solution [16], which is the
only available analytical solution for 3-D objects. Calcula-
tions have also been made for spheroids and a composite
rat model. As described below, the results agree well with
those of other numerical techniques and they agree quali-
tatively with some experimental data.

NUMERICAL RESULTS
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Fig. 3. Calculated E field along the z axis in a homogeneous dielectric
sphere with r, = 0.408/k, ¢, = 36, and |E'|=1 V /m. Eight-cell, 32-cell,
and 64-cell models are used.

A. Spherical Objects

Three polyhedral models have been used to calculate the
fields inside both homogeneous and layered dielectric
spheres irradiated by an incident EM plane wave. Shown
in Fig. 2(a)—(c) are one-eighth of the cell arrangements of
eight-cell, 32-cell, and 64-cell polyhedral models, respec-
tively. In the 32-cell model, there are four polyhedral cells
in each octant of the dielectric sphere, with a total of four
cells forming the core and 28 cells representing the shell.
The 32-cell model and the 64-cell model are constructed in
such a way that they can be used to model either a
homogeneous sphere or a layered sphere.

The outer surface of the sphere is approximated by
many small triangular patches on the polyhedral model, as
shown in Fig. 2(d). Because there is no restriction on the
number of patches a polyhedron can have, we have used
up to 81 patches on one octant of a spherical surface,
which constitutes a very realistic spherical model. These
triangular patches are basic elements in the numerical
calculation of the surface-charge term in (9). The volume
integration terms in (9) are computed numerically using
the ordinary rectangular rule, which consists of subdivid-
ing the polyhedral cells into small cubes and assuming a
constant value in each cube. The cubes do not fit the
boundaries of the polyhedral cells smoothly, but we have
found that this is not very critical for the volume integral
terms. The shape of the cells is critically important in
evaluating the surface integral terms in (9), but not in
evaluating the volume integral terms.

The first test case is a lossless, homogeneous dielectric
sphere with a radius r, = 0.408 /k and permittivity ¢, = 36
irradiated by an x-polarized EM plane wave propagating
in the + z direction. All three of the spherical models of
Fig. 2 have been used to compute the induced E field for
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Fig. 4. Calculated E field along the z axis in an eight-cell model of a
homogeneous, lossy dielectric sphere with 7, =0.2/k, ¢, =80— j180,
and |E’|=1 V/m. (a) Magnitude of E, along the z axis. (b) Phase of
E, along the z axis.

comparison with the Mie solution. Fig. 3 shows the magni-
tude of the dominant field E, along the z axis. It can be
seen that increasing the number of mathematical cells in a
given spherical model has systematically improved the
accuracy of the numerical results; therefore, the calculated
fields using this method appear to converge to the exact
solution.

Fig. 4 shows the computed E fields along the z axis
using the eight-cell spherical model and the Mie solution
for a small but highly lossy homogeneous sphere. Both the
magnitude and the phase of the fields have been plotted
against kz. The worst error was less than 7 percent for the
magnitude and 50 degrees for the phase. For most points,
the error was less than 5 percent and 20 degrees for
magnitude and phase, respectively.

The x component of the electric field along the z axis in
a 32-cell model of a two-layered lossy dielectric sphere
with a core radius r; = 0.2 /k with complex permittivity of
€, =40— j40 and an outer radius of r,=0.4/k with ¢, =
20— ;20 is shown in Fig. 5. Data obtained from the Mie
solution are also shown. The calculated fields can be seen
to agree well with the analytical solution except at one end
point, which has a maximum error of about 15 percent.
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Fig. 5. Calculated E field along the z axis in a 32-cell model of a
two-layered lossy dielectric sphere with » = 0.2/k, r, =0.4/k, ¢,, = 40
— j40, €,, =20— j20, and |E‘|=1 V/m. (a) Magnitude of E, along
the z axis. (b) Magnitude of E, and E, along the x axis.

The fields inside a lossless dielectric layered sphere with
a larger radius (r, =0.814/k) have also been calculated
using the 64-cell model. Fig. 6(a) is a plot of |E | along the
z axis; Fig. 6(b) and (c) show |E,| and |E,| along the x
axis. Also shown are the results obtained by the exact Mie
solution and by Schaubert ez al. [13], who used tetrahedral
cells with special (roof-top) basis functions and Galerkin’s
testing procedure.

The FGLMG shows a better agreement with the ana-
Iytic solution than the tetrahedral solution, as indicated in
Fig. 6(b). In the vicinity of the dielectric interface, the
value of |E,| has a discontinuity because E, is normal to
the dielectric interface. The linear basis functions clearly
reflect the discontinuity. The discontinuity is also implicit
in the formulation using roof-top basis functions, but is
not identifiable in the results shown in [13]; this is because
the cell surfaces are not perpendicular to E_, even though
the spherical surface is. In the 64-polyhedrai-cell model
used with the linear basis functions, the number of un-
knowns can be reduced to 192 by taking advantage of two
planes of symmetry. In the 512-cell tetrahedral model used
with the roof-top basis functions, the number of unknowns
can be reduced to 272 by using two planes of symmetry.
Thus, the linear basis functions, in addition to requiring
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Fig. 6. Calculated E field along the z axis in a 64-cell model of a
two-layered lossless dielectric sphere with » =0.395/k, r,=03817/k,
€,=16, ¢,,=9, and |E'|=1 V/m. (a) Magnitude of E, along the z
axis. (b) Magnitude of E, along the x axis. (c) Magnitude of E, along
the x axis.

fewer unknowns, provide a smoother approximation than
the roof-top functions, since the latter are linear in only
one direction.

The electric-field boundary condition requires the paral-
lel component to be continuous at the interface of inho-
mogeneities. Because of the use of subsectional basis func-
tions, discontinuities usually appear at the cell boundaries
of the solutions. This can be observed clearly in Fig. 3 and
Fig. 6(a) and (c), where the exact solutions predicted a
continuous curve, but the linear basis approximation
showed some jumps at the cell boundaries. Since these
jumps point out the degree of discrepancy between the
linear approximation and the exact solution, they can be
used as an important guide. When applying the FGLMG
to an unknown problem, if the resultant jumps are small
compared with the total field, the calculated solution is
probably close to the exact solution. If, however, the jumps
appear to be large, the results obtained on the cell
boundaries are contradictory and the calculated fields are
probably incorrect. This would indicate that smaller cells
must be used to obtain more accurate results.

B. Nonspherical Objects

The FGLMG has also been used to compute the in-
duced E field inside nonspherical bodies exposed to the
fields of an EM plane wave. A homogeneous spheroidal
model consisting of 24 polyhedral cells with 72 unknowns
(using two planes of symmetry) has been used with the
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Fig. 7. Calculated E field along the major axis in a model of a lossy
dielectric spheroid, |E*|=1 V/m, by the linear-basis-function method
and the long-wavelength approximation. Three major cases (E, H, and
K polarization) are shown.

linear-basis-function method. The calculated data have
been compared with those obtained by the long-wave-
length analysis [17]. Data for three standard polarizations,
E, H, and K, are shown in Fig. 7 for a spheroid of
ka=0.3, a/b=3, and ¢,=40— j40, where a and b are
the semimajor and semiminor axes, respectively. The
agreement of these two techniques appears to be very
good.

An ongoing research project at the University of Utah
has been the experimental determination of the SAR dis-
tribution in models of a rat exposed to EM fields in the
range of 360 MHz to 2450 MHz. One of the models is a
composite of two prolate spheroids, one simulating the
head and the other the body of a medium-size rat with a
total length of 17.5 cm and a mass of 256 g [18). This
model was made of material with electric properties of
muscle and was irradiated by a 360-MHz plane-wave
source.

The experimental SAR data shown in Fig. 8 were taken
from nine temperature probes placed along the major axis
of the composite rat model. Some preliminary data on
SAR distributions inside this composite model using the
linear-basis-function method have been obtained and com-
pared with the experimental data. Since the actual permit-
tivity of the model material has not yet been measured, the
calculated SAR distributions for two different values of
complex permittivity, along with the experimental data,
are shown in Fig. 8. Reasonably good qualitative agree-
ment for the calculated and the measured data can be
observed in Fig, 8.

C. Computation Time

The calculations with linear basis functions described
above were made on the University of Utah’s Univac 1161
computer. The CPU time consumed depended upon the

1137
1 S
.
Ty r!
1.2 %
L
— ———  —— 2/3 muacle*

2 9
-
M
S Phantom**
2
4

Q0 6 5 -
x K528 = 3784 | Lo

x4 - 144
0.3 .
s >
g .
e T

Al ! | ] | | 1
-7 90 -5 25 -3 5@ -t 7S <]

1.7 350 525 7 00

SAMPLE SITE

Fig. 8. SAR distribution inside a composite model of a medium-size rat
irradiated by an EM plane wave at 360 MHz; E polarization. The
model is 17.5 cm long and 5.2 cm wide.

number of cells, the cell configuration, and the degree of
accuracy required. For the results of Fig. 3 obtained with
eight-cell, 32-cell, and 64-cell spherical models, the CPU
times were 2.6 min, 8 min, and 47 min, respectively. These
times include tracing the triangular patches, building the
matrix, and doing LU factorization. It has been found that
most of the computation time, about 90 percent, was spent
on filling the matrix, which includes two numerical in-
tegrations as in (9).

We have found that particularly the second term (volume
integral) in (9) accounts for most of the matrix building
time because it is based on a crude algorithm. In all the
cases described above, the numerical integrations have
been overdone to ensure accuracy.

In other words, similar results should still be obtained
with less accuracy in evaluating the matrix elements and
hence less CPU time. For larger objects, such as the case
of Fig. 6, we have used more subdivisions in numerical
integration, so the total CPU time was as high as 81 min.
One thing worth mentioning is that the (¢, (#’)—1) term in
(9) can be decoupled from the matrix. Therefore, the
matrix for a specific cell geometry at a given frequency can
be first built and stored, and the results for different
dielectric constants but the same shape and size can be
obtained by repeatedly inverting the stored matrix coupled
back with factors (e,(r’)—1). Considerable savings in
computation time can be achieved in this way because the
matrices need only be built once.

IV. DISCUSSION AND SUMMARY

A new method for computing the induced electromag-
netic fields inside arbitrarily shaped, three-dimensional,
inhomogeneous dielectric bodies has been presented. This
method is based on the use of arbitrarily shaped poly-
hedral volume elements, which allows realistic modeling of
body shapes.

Subsectional linear basis functions have been used to
represent the field within each cell. Although these basis
functions result in larger matrices for a given number of
cells than pulse basis functions, the cell size can generally
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be much larger with linear basis functions than with pulse
functions. The 3-D linear basis functions also provide a
smoother description of the fields.

A new testing procedure, called the modified Galerkm’
method, has been developed and used with the method-of-
moments solution. The advantages of the MGM testing
procedures over the ordinary Galerkin’s method can be
summarized as follows.

1) It replaces the numerical integration for averaging
over the cells by analytical integrations over spheres ap-
proximating the cell volumes, which greatly reduces com-
putation time and numerical errors.

2) It eliminates the troublesome 1/R singularity in the
self-term of Galerkin’s method.

3) Because the numerical averaging integration is
omitted, multipatched polyhedrons can be used to form a
very realistic model.

A major limitation of the linear basis functions is the
large matrices required for a given number of cells as
compared to other methods. The condition v *[(e,(r")—
1E(r)]=0 in the internal region of every cell, as dis-
cussed above, can be applied to reduce further the number
of unknowns per cell by one. However, 11 unknowns per
cell is still large compared with the three unknowns in each
cell for pulse basis functions. A possible way to reduce the
number of unknowns required for the linear basis func-
tions would be to require the basis functions in each cell to
satisfy the boundary conditions at the cell walls. This, of
course, would also complicate the algorithms. The tech-
nique, however, does appear promising; in the one test
case we tried, we found that the calculated results were
about the same when the number of unknowns was re-
duced by satisfying the boundary conditions as when the
boundary conditions were not used [15]. In order to reduce
the CPU time required to build the matrices, the primitive
rectangular rule used in evaluating the numerical integra-
tions should also be replaced by a more efficient al-
gorithm,

Test cases including homogeneous spheres, layered
spheres, and nonspherical objects indicate that better accu-
racy in calculating internal SAR distributions can be ob-
tained by using linear basis functions. In order to increase
the applicable range of this method, for instance, to larger
and more complex dielectric bodies such as human bodies,
more work needs to be done in reducing the unknowns in
each cell so that more cells can be used in modeling the
complex structures.
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